“The Aurora represents a massive step forward in space transportation,” said Stefan Powell, Chief Technology Officer of Dawn Aerospace. “Using the same vehicle hundreds or even thousands of times means we don’t need a factory to produce rockets. We can operate a fleet of vehicles to access space daily. And we don’t have to pollute the ocean with rocket debris as we do it.”
The Mk-II Aurora will demonstrate the core technology for daily access to space in a subscale vehicle. It has a modest payload capacity, enough to bring scientific experiments to space, but too little for an orbital second stage. The later generation Mk-III will be based on the Mk-II design, but with a larger payload capacity. This will allow a 50-100kg satellite to be delivered to orbit. The Mk-III will deliver satellites into orbit using an expendable second stage. After releasing a satellite, the second stage burns up in the atmosphere and accounts for about 6 percent of the whole vehicle, making the whole system 94% reusable.
Current rockets have to fly out of special launch sites and secure, exclusive airspace. This means they have to shut down busy travel routes, such as around Cape Canaveral in Florida, or travel to far-flung places where air and sea traffic is low. Dawn Aerospace will fly its spaceplanes from existing airports under aircraft laws. They are working closely with the NZ Space Agency (NZSA) and Civil Aviation Authority (CAA) to make that happen.
“The challenge of getting to space is equal parts the vehicle, the launch infrastructure and the regulation,” said James Powell, General Manager and CFO. “Building a cheaper rocket, as many are trying to do, only helps with the first part. Dawn’s spaceplane addresses all three factors. The CAA and NZSA have established the best regulatory system in the world, which makes this possible. We are privileged to be working with them.”